[Poster Presentation]Asynchronous Motor Fault Diagnosis Output Based on VMD-XGBoost

Asynchronous Motor Fault Diagnosis Output Based on VMD-XGBoost
ID:124 Submission ID:41 View Protection:ATTENDEE Updated Time:2023-11-20 13:53:19 Hits:127 Poster Presentation

Start Time:Pending (Asia/Shanghai)

Duration:Pending

Session:[No Session] » [No Session Block]

Presentation File Attachment File

Tips: The file permissions under this presentation are only for participants. You have not logged in yet and cannot view it temporarily.

Abstract
针对异步电机的常见故障诊断,提出了VMD(变分模态分解)和XGBoost(极限梯度增强算法)模型用于异步电机的故障诊断输出。通过电磁场仿真获得异步电动机的定子电流。然后,对A、B、C相的定子电流进行VMD分解,提取故障的近似熵作为故障特征;最后,将其输入到XGBoost模型中进行电机故障诊断。实验结果表明,VMD与XGBoost相结合的诊断方法可以实现故障类型诊断输出,具有重要的现实意义。
 
Keywords
Asynchronous Motor ; Fault Diagnosis ;VMD; XGBoost ; Approximate Entropy
Speaker
Ming Tang
postgraduate ShangHai Dianji University

Submission Author
Ming Tang ShangHai Dianji University
Aiyuan Wang Shanghai Dianji University
ZhenTian Zhu Shanghai Dianji University
Comment submit
Verification code Change another
All comments

Contact us

Southwest Jiaotong University

(SWJTU)

Add: No.999, Xi'an Road, Pidu

District, Chengdu City, Sichuan

Province,611756 China

Email: ciycee2023@163.com

 

Aconf Staff:Lu Wei

Tel:+86 18971567453
Email:luwei@chytey.com

WeChat public account: 

IEEE IAS SWJTU Student Branch